MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE CAMPOS.
MECÃNICA GRACELI GERAL - QTDRC.
equação Graceli dimensional relativista tensorial quântica de campos G* = = [ / IFF ] * * = / G / .= / [DR] = = .= + G+ * * = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
Teoria | Interação | mediador | Magnitude relativa | Comportamento | Faixa |
---|---|---|---|---|---|
Cromodinâmica | Força nuclear forte | Glúon | 1041 | 1/r7 | 1,4 × 10-15 m |
Eletrodinâmica | Força eletromagnética | Fóton | 1039 | 1/r2 | infinito |
Flavordinâmica | Força nuclear fraca | Bósons W e Z | 1029 | 1/r5 até 1/r7 | 10-18 m |
Geometrodinâmica | Força gravitacional | gráviton | 10 | 1/r2 | infinito |
G* = OPERADOR DE DIMENSÕES DE GRACELI.
DIMENSÕES DE GRACELI SÃO TODA FORMA DE TENSORES, ESTRUTURAS, ENERGIAS, ACOPLAMENTOS, , INTERAÇÕES DE CAMPOS E ENERGIAS, DISTRIBUIÇÕES ELETRÔNICAS, ESTADOS FÍSICOS, ESTADOS QUÂNTICOS, ESTADOS FÍSICOS DE ENERGIAS DE GRACELI, E OUTROS.
/
/ * *= = [ ] ω , , .=
MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE INTERAÇÕES DE CAMPOS. EM ;
MECÂNICA GRACELI REPRESENTADA POR TRANSFORMADA.
dd = dd [G] = DERIVADA DE DIMENSÕES DE GRACELI.
- [ G* /. ] [ [
G { f [dd]} ´[d] G* . / f [d] G* dd [G]
O ESTADO QUÂNTICO DE GRACELI
- [ G* /. ] [ [ ]
G* = DIMENSÕES DE GRACELI TAMBÉM ESTÁ RELACIONADO COM INTERAÇÕES DE ENERGIAS, QUÂNTICAS, RELATIVÍSTICAS, , E INTERAÇÕES DE CAMPOS.
o tensor energia-momento é aquele de um campo eletromagnético,
/* = = [ ] ω , , .=
Na física atômica, um átomo helioide ou átomo de dois elétrons é um sistema quântico que consiste em um núcleo com carga de Ze e apenas dois elétrons.[1][2] Este é o primeiro caso de sistemas de muitos elétrons em que o princípio de exclusão de Pauli desempenha um papel central.[3] É um exemplo de um problema de três corpos.[4]
Equação de Schrödinger
Como o átomo de hélio neutro (He, Z = 2), o íon de hidrogênio negativo (H−, Z = 1), ou o íon de lítio positivo (Li+, Z = 3) as aproximações mais básicas para as soluções exatas envolvem escrever uma função de onda multi-elétron como um produto simples de funções de onda de um elétron e obter a energia do átomo no estado descrito por essa função de onda como a soma das energias da função de onda de componentes um-elétron.[5] A equação de Schrödinger para qualquer sistema de dois elétrons é[nota 1]: / * = = [ [ ] .=
onde r1 é a posição de um elétron (r1 = |r1| é a sua magnitude), r2 é a posição do outro elétron(r2 = |r2| é a magnitude), r12 = |r12| é a magnitude da separação entre eles dada porμé a massa reduzida de dois corpos de um elétron em relação ao núcleo de massa M
/ * = = [ [ ] .= e Z é o número atômico do elemento (não um número quântico).
O termo cruzado de dois lap / .= lacianos
é conhecido como o termo de polarização de massa, que surge devido ao movimento de núcleos atômicos. A função de onda é uma função das posições dos dois elétrons:
Não há solução de forma fechada para esta equação.
A renormalização é um conjunto de técnicas utilizadas para eliminar os infinitos que aparecem em alguns cálculos em Teoria Quântica de Campos.[1] Na mecânica estatística dos campos[2] e na teoria de estruturas geométricas auto-similares,[3] a renormalização é usada para lidar com os infinitos que surgem nas quantidades calculadas, alterando valores dessas quantidades para compensar os efeitos das suas auto-interações. Inicialmente vista como um procedimento suspeito e provisório por alguns de seus criadores, a renormalização foi posteriormente considerada uma ferramenta importante e auto-consistente em vários campos da física e da matemática. A renormalização é distinta da outra técnica para controlar os infinitos, regularização, que assume a existência de uma nova física desconhecida em novas escalas.[4]
Renormalização em EDQ
Os campos e a constante de acoplamento são realmente quantidades "cruas", por isso, o índice B acima. Convencionalmente, as quantidades cruas são escritas de modo que os termos lagrangianos correspondentes sejam múltiplos dos renormalizados:
Teoria de gauge e Identidade de Ward-Takahashi[5][6] implicam que podemos renormalizar os dois termos da parte derivada covariante juntos[7], que é o que aconteceu para Z2, é o mesmo com Z1.[8]
A propriedade central da mecânica estatística é a utilização de métodos estatísticos para a formulação de uma teoria cinética para átomos e moléculas, com o intuito de explicar as propriedades deles em um nível macroscópico da natureza.[8]
Um teorema chave é o valor médio da energia cinética das moléculas de um gás a uma certa temperatura que é calculado como
A distribuição de Boltzmann é um resultado muito conhecido na física, que relaciona a Termodinâmica com a Mecânica Estatística.[8] Por exemplo: a distribuição de moléculas na atmosfera - desconsiderando ventos e que se encontra em equilíbrio térmico a uma temperatura
Supondo que é o número de moléculas total em um volume de um gás à pressão então tem-se que:
o número de moléculas por unidade de volume. A temperatura sendo uma constante, a sua pressão será proporcional à sua densidade.

A variação de densidade em função da altitude se dá ao tomar-se uma unidade de área com altura sua força vertical será a força sobre a área sendo representado por (pressão).
Em um sistema em equilíbrio, suas forças nas moléculas deverão ser balanceadas ou nulas sendo a pressão feita na área inferior da camada que deve superar a pressão sobre a área de cima da camada assim balanceando com o peso.
Sendo a força da gravidade em cada molécula, é o número total das moléculas em cada área.[8] Com todas essas informações obtém-se a equação diferencial que representa o equilíbrio
Assim, sendo e também constantes , elimina-se e resta a equação para
Tem-se a variação da densidade em função da altura na atmosfera do exemplo:
sendo a densidade em relação à

O numerador do expoente da equação anterior representa a energia potencial para cada átomo, sendo sua densidade em cada ponto igual a
Sendo que é a energia potencial de cada átomo.
Supondo que haja diversas forças em atuação nos átomos, sendo elas carregadas e estejam sob forte influência de um campo elétrico ou haja atração entre elas.
Havendo um tipo apenas de molécula, a força em uma porção de gás será a força sobre uma molécula o número de moléculas nessa mesma porção, sendo que a força age na direção Semelhante em sua forma do problema da atmosfera, tomando dois planos paralelos no gás apenas separados por uma distância representada por então a força sobre cada átomo multiplicada pela densidade e por deve ser balanceada pela diferença de pressão, ou seja,
sendo o trabalho feito sobre uma molécula ao transportá-la de até seu trabalho é igual à diferença de energia potencial (ao quadrado) assim,
Obtém-se da equação de força anterior:
Resultando em
Sendo a variação de energia do estado final e inicial.
Esta última expressão é tratada como sendo a Lei de Boltzmann e pode ser interpretada da seguinte forma:
- A probabilidade de encontrar moléculas em uma dada configuração espacial é tanto menor quanto maior for a energia dessa configuração a uma dada temperatura.
Tal probabilidade diminui exponencialmente com a energia dividida por
Comments
Post a Comment